Supervised Named Entity Recognition for Clinical Data
نویسنده
چکیده
Clinical Named Entity Recognition is a part of Task 1b, organised by CLEF eHealth organisation in 2015. The aim is to automatically identify clinically relevant entities in medical text in French. A supervised learning approach has been used for training the tagger. For the purpose of training, Conditional Random Fields(CRF) has been used. An extensive set of features was used for training. Precision, recall and F1 Score were used as evaluation metrics. Ten fold cross validation technique was used to evaluate the system. The best precision obtained was 0.91 and the best recall obtained was 0.66. After the test results were announced, the best F1 score obtained for exact matching was 0.67 and for relaxed case (i.e. inexact matching), it was 0.73.
منابع مشابه
Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملMinimally Supervised Japanese Named Entity Recognition: Resources and Evaluation
Approaches to named entity recognition that rely on hand-crafted rules and/or supervised learning techniques have limitations in terms of their portability into new domains as well as in the robustness over time. For the purpose of overcoming those limitations, this paper evaluates named entity chunking and classi cation techniques in Japanese named entity recognition in the context of minimall...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملA Semi-supervised Learning Approach to Arabic Named Entity Recognition
We present ASemiNER, a semisupervised algorithm for identifying Named Entities (NEs) in Arabic text. ASemiNER does not require annotated training data, or gazetteers. It also can be easily adapted to handle more than the three standard NE types (Person, Location, and Organisation). To our knowledge, our algorithm is the first study that intensively investigates the semi-supervised pattern-based...
متن کامل